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Zero-knowledge proof 

Statement 

Prover Verifier

Witness

Ö

Soundness:
Statement is true

Zero-knowledge:
Nothing but truth revealed



Round complexity

• Interactive zero-knowledge proof

• Non-interactive zero-knowledge proof
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Statements

• Statements are 𝜙 ∈ 𝐿 for a given NP-language 𝐿
• Prover knows witness 𝑤 such that 𝜙,𝑤 ∈ 𝑅'

– But wants to keep the witness secret!
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Circuit SAT

𝑥) ∧ 𝑥+ ∧ ¬𝑥- ∨ (𝑥+ ∧ x1 ∧ 𝑥2)
SAT

Hamiltonian
Plaintext is 
signature on…



Proof system (Setup,Prove,Verify)

• Setup 1; → 𝑐𝑟𝑠:
– Sometimes we assume a trusted setup. This is in 

particular required for non-interactive zero-knowledge.
• Prove 𝑐𝑟𝑠,𝜙,𝑤 ;Verify 𝑐𝑟𝑠,𝜙 → accept/reject

– Stateful algorithms Prove and Verify interact. In the end 
Verify accepts or rejects the proof.

In non-interactive proofs the prover generates a proof using 
Prove 𝑐𝑟𝑠, 𝜙, 𝑤 → 𝜋 and the verifier runs Verify(𝑐𝑟𝑠, 𝜙, 𝜋) to 
decide whether to accept or reject



Zero-knowledge proofs

• Completeness
– Prover can convince the verifier when statement is true

• Soundness
– Cheating prover cannot convince the verifier when 

statement is false
• Zero-knowledge

– No leakage of information (except truth of statement) 
even if interacting with a cheating verifier

– Defined as there being a simulator that can produce a 
transcript without knowing the witness (and therefore 
not leaking anything about the witness) 6



Internet voting

Voters Election authorities

Ciphertext

Vote Encrypts vote to 
keep it private

Tally without decrypting 
individual votes
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Election fraud

Voters Election authorities

Ciphertext

Not Bob Encrypts -100 
votes for Bob

Is the encrypted 
vote valid?
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Zero-knowledge proof as solution

Voters Election authorities

Ciphertext

Soundness:
Vote is valid

NIZK proof 𝜋 for 
valid vote inside

Zero-knowledge:
Vote is secret
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Mix-net: Anonymous message broadcast

𝑚P ) 𝑚P + 𝑚P Q

…

𝜋)

𝜋+

𝜋 = 𝜋+ ∘ 𝜋)

𝑚) 𝑚+ 𝑚T



Problem: Corrupt mix-server

𝑚P ) 𝑚P + 𝑚P T
U

…

𝜋)

𝜋+

𝜋 = 𝜋+ ∘ 𝜋)

𝑚) 𝑚+ 𝑚T



Solution: Zero-knowledge proof

𝑚P ) 𝑚P + 𝑚P T

…

𝜋)

𝜋+

𝜋 = 𝜋+ ∘ 𝜋)

𝑚) 𝑚+ 𝑚T

Server 1 ZK proof
No message changed

(soundness)

Server 2 ZK proof
Permutation still secret

(zero-knowledge)



Verifiable outsourced computation

• Client outsources 
computation to the cloud

• Gets back result based on its 
own data and cloud data

• Cloud gives zero-knowledge 
proof that result is correct



Ring and group signatures

• Want to sign as 
member of group

• Anonymous within 
group

• Core techniques
– NIZK proof that signer 

is member of group
– Or NIZK proof that 

signer has signature 
certifying membership



Zerocoin

Coin spending
Reveal serial number

Anonymity
Each coin has unique 
secret serial number 
known only to owner
Use zero-knowledge 
proof to demonstrate 
one of the coins has 
revealed serial number



Preventing deviation (active attacks) by 
keeping people honest

Alice Bob

Yes, here is a zero-
knowledge proof that 
everything is correct 

Did you follow the 
protocol honestly 
without deviation?



From malicious adversary to honest but 
curious adversary

𝜋VWXXYVZ

𝜋VWXXYVZ

𝜋VWXXYVZ

𝜋VWXXYVZ𝜋VWXXYVZ

𝜋VWXXYVZ

𝜋VWXXYVZ



Vision

• Main goal
– Efficient and versatile zero-knowledge proofs

• Vision
– Negligible overhead from using zero-knowledge proofs

– Security against active attacks standard feature
18

zero-knowledge
core core



Performance parameters

• Prover’s computation
– Time and memory

• Verifier’s computation
– Time and memory

• Communication
– Bits transmitted
– Number of messages exchanged



History of NIZK proofs

Size

Risk

one-way functions
trapdoor perm.
factoring-based
pairing-based

knowledge extract.
random oracle

0 sublinear linear superlinear

AF07,GW11

BFM

FLSKP

Mic

Gro
Lip

GOS

DamGro

Gro

CDS

BDMP
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GGPR

Gro16
DFGKGro

Proof size:
3 group elements

FHE + NIZK

indist. obfuscation SW

GenIGGPSS



Groth 
EUROCRYPT 2016

• Arithmetic circuit
– 𝑁 multiplication gates
– |𝜙| public input wires

• NIZK argument
– Perfect completeness
– Perfect zero-knowledge
– Computational soundness

• Generic group model

Rounds Prover Verifier Communication
Non-interactive 𝑁 exponentiations |𝜙| exponentiations 3 group elements

zk-SNARK
Succinct Non-interactive 
Argument of Knowledge



• Pinnocchio, Libsnark, Pantry, Buffet,…
• Prove program P with input x outputs y

– Zero-knowledge useful if part of x is secret

Libsnark implementation
- 4x faster prover, 200B proofs

Verifiable computation zk-SNARKs

∑𝑎`𝑢` 𝑥
	⋅ 	∑𝑎`𝑣` 𝑥
≡ ∑𝑎`𝑤` 𝑥 	
	+ℎ(𝑥)𝑡(𝑥)

𝜋



Prime order bilinear groups

23

• Gen(1k) generates (𝑝, 𝐺), 𝐺+, 𝐺n, 𝑒, 𝑔, ℎ)	
• 𝐺), 𝐺+, 𝐺n finite cyclic groups of prime order 𝑝

generated by 𝑔, ℎ and 𝑒(𝑔, ℎ)
• Bilinear map

– 𝑒 𝑔q, ℎr	 = 𝑒 𝑔, ℎ	 qr

• Generic group operations efficiently computable
Deciding group membership, group multiplications, pairing

Asymmetric bilinear groups (Type III): No efficiently 
computable isomorphism between 𝐺) and 𝐺+



Additive notation

• Given bilinear group (𝑝, 𝐺), 𝐺+, 𝐺n, 𝑒, 𝑔, ℎ) define 
𝑎 ) = 𝑔q								 𝑏 + = ℎr							 𝑐 n = 𝑒 𝑔, ℎ	 t

and use additive notation for elements in brackets
• The generators can now be written 1 ), 1 +, 1 n

• Define dot products using linear algebra notation
�⃗� ∗ ⋅ 𝑏 = �⃗� ⋅ 𝑏 ∗								 �⃗� ) ⋅ 𝑏 + = �⃗� ⋅ 𝑏 n

• And for matrix multiplication
𝑀 �⃗� ∗ = 𝑀�⃗� ∗



Pairing-based SNARK

• NP-relation 𝑅	with statements 𝜙 and witnesses 𝑤
• Common reference string

– Generate �⃗�), �⃗�+, 𝜏 ← Setup 𝑅
– Let common reference be (𝑅, �⃗�) ), �⃗�+ +)

• Proof
– Π), Π+ ← ProofMatrix(𝑅,𝜙, 𝑤)
– 𝜋 = 𝜋) ), 𝜋+ + = (Π) �⃗�) ), Π+ �⃗�+ +)

• Verification
– 𝑇),… , 𝑇� ← Test(𝑅, 𝜙)
– Accept the proof 𝜋 if and only if for all 𝑇), … ,𝑇�

�⃗�)
𝜋) )

⋅ 𝑇 �⃗�+
𝜋+ +

= 0 n

Generic group 
operations



Arithmetic circuit • Write as quadratic 
equation

𝑎) + 𝑎- ⋅ 𝑎- = 𝑎+
• In general arithmetic circuit 

can be written as a set of 
equations of the form
∑𝑎`𝑢` ⋅ ∑𝑎`𝑣` = ∑𝑎`𝑤`
over variables 𝑎),… , 𝑎�
and by convention 𝑎� = 1

• Arithmetic circuit defines 
an NP-language with 
statements (𝑎),… , 𝑎ℓ) and 
witnesses (𝑎ℓ�),… , 𝑎�)

𝑎+

𝑎) 𝑎-

𝑎1



Rewriting the circuit as polynomial equations

• Consider an equation ∑𝑎`𝑢` ⋅ ∑𝑎`𝑣` = ∑𝑎`𝑤`
• Let 𝑢` 𝑥 ,𝑣` 𝑥 ,𝑤`(𝑥) be polynomials such that

𝑢` 𝑟 = 𝑢`				𝑣` 𝑟 = 𝑣`				𝑤` 𝑟 = 𝑤`
• Then equation satisfied if

∑𝑎`𝑢` 𝑥 ⋅ ∑𝑎`𝑣` 𝑥 ≡ ∑𝑎`𝑤` 𝑥 		mod	(𝑥 − 𝑟)
• Pick degree 𝑛 − 1	polynomials 𝑢` 𝑥 , 𝑣` 𝑥 ,𝑤`(𝑥)

such that this holds for all equations, using distinct 
𝑟),… , 𝑟Q for the 𝑛 equations in the circuit

• Values 𝑎�,… , 𝑎� satisfy all equations if
∑𝑎`𝑢` 𝑥 ⋅ ∑𝑎`𝑣` 𝑥 ≡ ∑𝑎`𝑤` 𝑥 	mod	∏(𝑥 − 𝑟�)



Quadratic arithmetic program

• A quadratic arithmetic program over 𝒁� consists of 
polynomials 𝑢` 𝑥 ,𝑣` 𝑥 ,𝑤` 𝑥 , 𝑡 𝑥 ∈ 𝒁�[𝑥]

• It defines an NP-relation with
– Statements (𝑎), … , 𝑎ℓ)
– Witnesses (𝑎ℓ�), … , 𝑎�)
– Satisfying (using 𝑎� = 1 to handle constants)
∑𝑎`𝑢` 𝑥 ⋅ ∑𝑎`𝑣` 𝑥 ≡ ∑𝑎`𝑤` 𝑥 		mod	𝑡(𝑥)



SNARK for QAPs
• Common reference string 𝜎 = ( �⃗�) ), �⃗�+ +)

– �⃗�) = 𝛼, 𝛽, 𝛿, 𝑥` , ��� �
� , ��� � ���� � ��� �

� `�ℓ
, ��� � ���� � ��� �

  `¡ℓ

– �⃗�+ = 𝛽, 𝛾, 𝛿, 𝑥`

• Prover creates 𝜋 = ( 𝐴 ), 𝐶 ), 𝐵 +)
𝐴 = 𝛼 +∑𝑎`𝑢` 𝑥 + 𝑟𝛿												𝐵 = 𝛽 +∑𝑎`𝑣`(𝑥) + 𝑠𝛿

𝐶 = ¦𝑎`
𝛽𝑢` 𝑥 + 𝛼𝑣` 𝑥 + 𝑤` 𝑥

𝛿

�

`¡ℓ
+ 𝐴𝑟 + 𝐵𝑠 − 𝑟𝑠𝛿

• Verifier accepts if

𝐴 ) ⋅ 𝐵 + = 𝛼 ) ⋅ 𝛽 + +¦𝑎`
𝛽𝑢` 𝑥 + 𝛼𝑣` 𝑥 + 𝑤` 𝑥

𝛾 )
⋅ 𝛾 +

ℓ

`¨�
+ 𝐶 ) ⋅ 𝛿 +

Completeness
Proof of form 

𝐴, 𝐶 ) = Π) �⃗�) )
𝐵 + = Π+ �⃗�+ +

computable from 
witness (𝑎ℓ�),… , 𝑎�)
satisfies verification

Efficiency
Proof size: 2𝐺)	, 1𝐺+
Prover: 𝑚+ 2𝑛	𝐸), 𝑛	𝐸+
Verifier: ℓ	𝐸) + 3𝑃Zero-knowledge

Simulator given 𝜏 = (𝛼,𝛽, 𝛾, 𝛿, 𝑥) picks random 𝐴, 𝐵 ← 𝒁�
Computes 𝐶 = ®¯��¯∑ q� ��� � ���� � ��� ��

�°ℓ
 

Returns simulated proof 𝜋 = ( 𝐴 ), 𝐶 ), 𝐵 +)

Knowledge soundness
Generic group adversary
- Random encodings ⋅ ` : 𝒁� → 𝐺`
- Gets encodings �⃗�) ), �⃗�+ +
- Oracle access to polynomially many group additions and pairings
Outline of proof we have soundness
- Generic group adversary must pick (𝜙, 𝐴 ), 𝐶 ), 𝐵 +) where 

𝐴 ), 𝐶 ) are computed linearly from �⃗�) ) and 𝐵 + from �⃗�+ +
- We argue that generic adversary cannot learn non-trivial 

information about common reference string using generic group 
operations, so linear combinations chosen obliviously of �⃗�), �⃗�+	

- Careful analysis shows this choice is unlikely to satisfy verification 
equation



Efficiency

Arithmetic circuits Proof size Prover Verifier Equations
[PGHR13] (symmetric) 8	𝐺 7𝑚 + 𝑛	𝐸 ℓ	𝐸,11	𝑃 5

This work (symmetric) 3	𝐺 𝑚 + 3𝑛	𝐸 ℓ	𝐸,3	𝑃 1

[BCTV14] 7	𝐺), 1	𝐺+ 6𝑚 + 𝑛	𝐸),𝑚	𝐸+ ℓ	𝐸)	, 12	𝑃 5

This work 2	𝐺), 1	𝐺+ 𝑚 + 3𝑛	𝐸),𝑛	𝐸+ ℓ	𝐸),3	𝑃 1

Boolean circuits
[DFGK14] 3	𝐺), 1	𝐺+ 𝑚 + 𝑛	𝐸) ℓ	𝑀)	, 6	𝑃 3

This work 2	𝐺), 1	𝐺+ 𝑛	𝐸) ℓ	𝑀)	, 3	𝑃 1

Circuits with 𝑚 wires, 𝑛 gates, statement size ℓ (ℓ ≪ 𝑛 < 𝑚)
Group element 𝐺, exponentiation 𝐸, pairing 𝑃, multiplication 𝑀

Efficiency gain
1. Generic group model
2. Carefully crafted verification equations



Thanks

• Questions?


